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Abstract

The rise of social media has been accompanied by a dark side
with the ease of creating fake accounts and disseminating mis-
information through coordinated attacks. Existing methods
to identify such attacks often rely on thematic similarities or
network-based approaches, overlooking the intricate causal
relationships that underlie coordinated actions. This work in-
troduces a novel approach for detecting coordinated attacks
using Convergent Cross Mapping (CCM), a technique that
infers causality from temporal relationships between user ac-
tivity. We build on the theoretical framework of CCM by
incorporating topic modelling as a basis for further optimizing
its performance. We apply CCM to real-world data from the
infamous IRA attack on US elections, achieving F1 scores up
to 75.3% in identifying coordinated accounts. Furthermore, we
analyse the output of our model to identify the most influential
users in a community. We apply our model to a case study
involving COVID-19 anti-vax related discussions on Twit-
ter. Our results demonstrate the effectiveness of our model in
uncovering causal structures of coordinated behaviour, offer-
ing a promising avenue for mitigating the threat of malicious
campaigns on social media platforms.

1 Introduction
While social media platforms have witnessed explosive
growth due to factors like peer pressure, evolving communi-
ties, and influencer culture, this increased engagement has
fueled a parallel threat: the ease of generating fake accounts
has increased the spread of misinformation and disinforma-
tion. Politically driven campaigns, seeking to manipulate
public opinion and achieve specific goals, rely on large num-
bers of coordinated accounts to amplify their messages and
maximize the impact. Existing techniques primarily focus
on identifying coordinated behaviours based on thematic
similarities, overlooking the intricate causality relationships
that underlie coordinated actions. This complexity in detect-
ing true coordination represents a significant gap in current
methodologies, forming the core motivation for our work.

There have been numerous examples of coordinated at-
tacks on social media. One of the most notable instances
was the influence of Russia’s IRA on the USA presiden-
tial elections via Twitter and Facebook (Mueller, Internet
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Research Agency, and States 2018). The Permanent Select
Committee on Intelligence identified 3,841 coordinated Twit-
ter accounts and 470 Facebook pages that were affiliated with
the IRA in 2017. In 2018, Twitter publicly released tweets
and users related to this case. In 2019, the UK general elec-
tions were influenced by coordinated users who polarized
political opinions on Twitter (Nizzoli et al. 2021).

There have been numerous attempts to identify coordina-
tion in Online Social Networks (OSNs). Some work in this
field sought to identify campaigns in social media (Lee et al.
2011, 2012). A major limitation of their work is the assump-
tion that coordination is reflected in the “theme” of messages
while other aspects of behaviour are ignored. Network-based
approaches (Pacheco et al. 2021; Nizzoli et al. 2021; We-
ber and Neumann 2021; Magelinski, Ng, and Carley 2021;
Hristakieva et al. 2022) tend to define coordination in terms
of community detection on user similarity graphs. Weber
and Neumann (2021) highlighted several coordination strate-
gies: pollution – flooding a community with repeated content,
boost – heavily reposting content to make the topic appear
popular, and bully – groups collectively harassing another in-
dividual or a community. In contrast, Zhang, Sharma, and Liu
(2021) and Sharma et al. (2021) define coordination in terms
of the synchronicity of users over time. They try to identify
coordinated users using masked self-attention (Vaswani et al.
2017) to encode the event history, using an approach similar
to the prediction model for marked temporal point processes
by Shchur, Biloš, and Günnemann (2020). Network-based
and theme-based approaches work under the assumption that
the content is the governing factor of the coordinated be-
haviour. The activity-based approaches work under the as-
sumption that active times of coordinated users are causally
linked with each other. In contrast, we consider that coordi-
nation should be reflected in the user activity traces.

We propose to identify how influence flows within a com-
munity of users by assessing causality between pairs of users
by exploring the layered dynamics and dependencies between
users. Causality offers a nuanced understanding of the users
who influence or trigger coordinated responses from others.
The idea of causality not only enhances the precision of coor-
dination detection, but also provides a deeper understanding
of the mechanisms driving coordinated activities.

Inferring causal structures through activity traces is more
reliable than focusing on textual data for several reasons.
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First, activity traces provide a record of user interactions,
reducing the risk of misinterpretation in text analysis. Second,
textual content is often context-dependent and subject to
nuances that can obscure true causal relationships, making it
challenging to accurately discern influence and coordination.
In contrast, activity traces reflect the timing and sequence of
actions, offering a clearer picture of how influence propagates
through a network, allowing for more precise and robust
detection of coordinated behaviours.

In order to address the problem of inferring causality be-
tween users as a basis for identifying coordination, we build
on the theory of Convergent Cross Mapping (CCM) (Sugi-
hara et al. 2012). CCM is a powerful technique that has been
used to identify causality in applicaitons such as ecology
and climatology. However, utility of CCM for inferring co-
ordinated behaviour among social media users has not been
considered in the literature.

In this article, we investigate methods of identifying coor-
dination using convergent cross mapping, and evaluate the
performance of our model on real data. Our research aims to
address the following questions:
RQ1. How effective is inferring coordination using causal

structures of users?
RQ2. Based on semantics, what methods can be imple-

mented to optimize the performance of our model?
RQ3. What are the key limitations and challenges associated

with inferring coordination using causal structures?
Our experiments on the IRA dataset (Permanent Se-

lect Committee on Intelligence 2018; Mueller, Internet Re-
search Agency, and States 2018) show that cross mapping
each pair of users can identify coordinated pairs of users accu-
rately. Moreover, the coordinated users who were identified
by our model belong to clearly separated clusters of interests.
We achieve F1 scores up to 75.3%. Further, we exploit the
clustered nature of users to optimize our model.

2 Background and Problem Statement
Convergent Cross Mapping. Unraveling relationships
within complex systems often leads researchers to study nu-
anced separation between correlation and causation. While
correlation signifies a statistical association between two
variables, it falls short of establishing a cause-and-effect rela-
tionship. In contrast, causation implies a direct influence of
one variable on another, suggesting a deeper understanding of
the underlying mechanisms governing a system. Convergent
Cross Mapping (CCM) (Sugihara et al. 2012) is a powerful
technique that can determine causality using the variation
of correlation at different training sample sizes (known as
library lengths) of predictions. CCM uses Takens’ principle
(Takens 1981) to detect if two variables belong to the same
dynamic system. Consider two time series variables X and
Y . CCM establishes the causality between variables by ex-
amining the predictive accuracy of a cross-mapped model
built using historical Y data to reconstruct X states. Causality
is suggested by the convergence of these reconstructed states
towards the actual X values.

CCM has been primarily found application in ecology
and (Sugihara et al. 2012; Clark et al. 2015; Ye et al. 2015;

Frossard, Rimet, and Perga 2018) climatology (van Nes et al.
2015; Luo et al. 2015; Zhang, Wang, and Tsonis 2018). CCM
was reviewed and provided improvements in works of Ye
et al. (2015); Krakovská and Hanzely (2016) and Tsonis
et al. (2018). The study in Cobey and Baskerville (2016)
explores the limitations of CCM such as its sensitivity to
periodicity. We consider that there is no reason for there to
be such periodical fluctuations of activity of users in OSNs,
but only major events govern the activity of users. CCM has
not been widely studied in the context of social networks
other than the work of Luo, Zheng, and Zeng (2014) and
Chung and Zeng (2020). However, their work is not geared
to infer coordination using causal relationships, but instead
to confirm their results with alternative network measures.
Thereby, we identify the gap in literature that CCM has yet to
be applied in social media contexts to determine coordinating
behaviours.

Preliminaries. We refer to an interaction made by a user
in the OSN as an event. For example, on Twitter (now called
X), a tweet authored by a user is considered an event. The
set of timestamps of events authored by a user u is called
an activity trace {t0,u, t1,u, . . . }. Influence flow is defined
as the causal effect one user’s activity has on another user’s
activity. If there is an influence flow from user u1 to u2, we
say u1 ⇒ u2. On a higher level, if u1 ⇒ u2, then there
is a high tendency that u2 gets active after u1’s action. If
u1 ⇒ u2 and u2 ⇒ u1, we say there is a bidirectional
coupling. If u1 ⇒ u2 but u1 ⇏ u2, we say that there exists a
unidirectional coupling. We named the directed graph where
the vertices are users and the edges are influence flows to be
the influence graph for the sample of users we consider.

Let U be a set of users in an OSN. Say we determine a
time period (tstart, tend) that presumably contains coordinated
anomalous activities based on observations. Let T be the set
of activity traces performed by each user in U in the above
time interval.
Problem Definition. Given a dataset of activity traces T , find
pairs of users that are causally influenced unidirectionally or
bidirectionally by measuring their prediction scores through
Convergent Cross Mapping. Find the users that belong to
such influencing pairs and mark them as coordinating users.

3 Methodology
Motivating Example. Our results for simulated users high-
light the applicability of CCM for social media data. We
simulated two users u1 and u2 to model different stages of a
simple leader-follower behavioural spectrum. We assumed
that the extremes of this spectrum to be: (1) the follower can
only be activated once with a lag after the leader is active, (2)
the behaviour is random for both agents. We applied CCM to
observe cross map prediction accuracy measured with corre-
lation at different library lengths. Figures 1a, 1b, 1c, and 1d
show our simulation results. The increasing nature of corre-
lation when there is a leader-follower behaviour motivated
us to adapt CCM to analyse on real online social network
(OSN) data.

Model. Say we analyse a set of users’ (U ) activity in a time
period (tstart, tend). First, we record timestamps of events au-
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Figure 1: Motivating example of the use of CCM to model causal behaviour in simulated social media data. We show the variation
of the correlation of predictions (vertical axis denoted ρ) for prediction about two simulated users u1 and u2, where u2 follows
u1 on social media, as the library lengths L (i.e., sample periods) increase. CCM implies causation if the correlation is increasing
for increasing library lengths. : predictions for u1 given u2’s shadow manifold i.e., history, : predictions for u2 given
u1’s shadow manifold, ...... : linear regression drawn for u1’s variation of correlation, and ...... : linear regression drawn for
u2’s variation of correlation. (a) u2 posts after u1, who posts at regular intervals. (b) u2 posts after u1, who posts at irregular
intervals. (c) u2 posts after u1, who posts at irregular intervals. However, u2 also posts at random times without u1 triggering
u2’s behaviour. (d) u1 and u2 behaves randomly.

thored by each user u ∈ U as Tu = {t0,u, t1,u, t2,u, . . . }.
Subsequently, every Tu is vectorized to a fixed size L,
Xu = ⟨Xu(1), Xu(2), Xu(3), . . . , Xu(L)⟩. Essentially, we
partition the time series into bins of size I = (tend − tstart)/L.
Here, Xu(a) = |{t | t ∈ Tu, (a − 1)I ≤ t < aI}|. The
embedding function e : U × Z≥0 → ZE

≥0 transforms each
time series into a series of lagged-coordinate embeddings.
For a lag τ > 0 and embedding size E > 1, a point in
Xu at time t is transformed as e(u, t) = ⟨Xu(t), Xu(t −
τ), . . . , Xu(t−(E−1)τ)⟩. This embedding results in a man-
ifold Mu = [e(u, 1), e(u, 2), . . . , e(u, L)] for each user u.
For a unique pair of users u1 and u2, Mu1

and Mu2
can be

considered as two shadow manifolds for the attractor mani-
fold of the original behaviour system of these two users given
by Mu1,u2 = [⟨Xu1(t), Xu2(t)⟩ | t = 1, 2, . . . , L]. We now
cross map Xu1 using Mu2 and vice versa. Specifically, we
use a nearest neighbors model with k = E + 1. Unseen data
in a future time window is then tested with the fitted model
to obtain predictions X̂u1

| Mu2
and X̂u2

| Mu1
. The cross-

correlation ρ of each prediction X̂u1
| Mu2

is compared
with ground truth Xu1

for multiple library lengths. Since ρ
estimates the predictability of one’s behaviour given another

person’s behaviour, it can be treated as a measure of influ-
ence. Hence, we define influence score by ρ. If ρ of u1 is
generally increasing with the library length, and its maximum
is sufficiently great (with a threshold θ), it indicates that it is
possible to estimate Xu1 from Xu2 . Therefore, in such case,
we imply that the behaviour of u1 drives u2 (i.e., u1 ⇒ u2).
It should also be noted that both u1 ⇒ u2 and u2 ⇒ u1 can
happen at the same time. If u1 ⇒ u2, we mark both u1 and
u2 to be suspected coordinated users. It is possible that u1

is influenced by any other u3 at different partitions of Xu1
.

Even though it could hinder the variation of ρ, CCM success-
fully recovers from it since we embed only a part of history
instead of the whole history. Specific hyperparameters and
methodologies that are used in the submodules are given in
Section 4.2.

Pairwise comparison. The computational expense associ-
ated with pairwise comparisons of N users can be substantial
(NC2 = O(N2)), yet accurate. In response, we devise an
optimization strategy based on the observation of our raw
results in Section 4.4.



4 Experiments
4.1 Data
We experiment on the dataset of the activity of Russia’s In-
ternet Research Agency (IRA) influencing the 2016 USA
presidential elections (Permanent Select Committee on Intel-
ligence 2018; Mueller, Internet Research Agency, and States
2018), which consists of confirmed coordinated activities.
This is a widely used dataset for detecting coordination (We-
ber and Neumann 2021; Sharma et al. 2021; Zhang, Sharma,
and Liu 2021; Weber and Falzon 2022) due to the availability
of ground truth. The dataset consists of 8.76 million tweets
posted by 3613 users. The dataset originally consisted of the
following fields; Tweet id, User id, User display name, User
screen name, User reported location, User profile description,
User profile url, Follower count, Following count, Account
creation date, Account language, Tweet language, Tweet text,
Tweet time, Tweet client name, Replied tweet id, Replied
user id, Quoted tweet id, Whether the tweet is a retweet,
Retweeted user id, Retweeted tweet id, Latitude where the
tweet is posted, Longitude where the tweet is posted, Quote
count, Reply count, Like count, Retweet count, List of hash-
tags, List of urls, List of user mentions, List of poll choices
if the tweet includes a poll. Figure 2 shows the distribution
of activity across the time.

In order to test the effectiveness of a coordination detection
model, we introduce a set of noisy background events to the
IRA dataset, since the IRA dataset only contains the set of co-
ordinating users. For that purpose, we scraped Twitter data for
that period of time which includes the same popular hashtags
in the IRA dataset using the Twitter API v2 for academics.
The criteria that were used to extract data were: posted time
between 2008 and 2018, marked location anywhere in the
USA, contains either one of the following hashtags - Elec-
tion2016, MAGA, MakeAmericaGreatAgain, AmericaFirst,
DonaldTrump, WakeUpUSA, Trump, TrumpTrain, HilaryClin-
ton, Trump2016, DrainTheSwamp, TrumpPence16, tcot, PO-
TUS, GOP, Resist, UniteBlue, NeverHillary, ElizabethWar-
ren, WeThePeople, IllegalAliens, TrumpRussia, ImWithHer,
GayHillary, WakeUpAmerica. The above set of hashtags were
the top-occurring hashtags in the original IRA dataset to en-
sure that the noise data belongs to the same ongoing discus-
sions at that period of time. The background data of normal
users consists of 2.80 million tweets from 333,000 of users.
The distribution of coordinating tweets and the noisy tweets
are shown in Figure 2. High activity is apparent near the
election time period (November 2016).

4.2 Experimental Setup
Parameters. We found that a bin size I of 60 minutes and a
lag τ of minimum value 1, and an embedding size E as 10 to
be parameter values that yield the best results. The threshold
θ was chosen as 0.5. We split the time trace vectors into 3:1
ratio for train, test datasets.

Time Intervals. The time period (tstart, tend) was chosen
such that it includes the election time period (November
2016) with the assumption that the coordinated activity was
at a maximum during that period of time. Thus, tstart was
chosen as July 2016 and tend was chosen as November 2016.
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Figure 2: Stacked distribution of IRA activities and extracted
noise tweets across time. The bin size for the x-axis is 1
million seconds (∼11.6 days). The red vertical line shows the
election date.

Extracting Top Users. For the tests to be fair, we mix the
top NC number of known coordinating users and top NN

number of known normal users from the above IRA dataset.
The users for tests were selected based on the frequency of
activities in the testing time period in order to ensure we have
enough data to cross map each and every user.

Submodules. To measure correlation ρ, we use Pearson’s
correlation method. In order to measure the general increase
in correlation values for multiple library lengths, a straight-
forward linear regression was conducted, and the resulting
gradient was used to assert the growth.

4.3 Results
Following is a report of our results for NC = 200 and NN =
200. Out of 400C2 number of user pairs checked, 2404 pairs
were identified as coordinating pairs. Out of such pairs,

• 2319 (96.5%) were known coordinating – coordinating
pairs.

• 63 (2.6%) were known coordinating – normal pairs.
• 22 (0.9%) were known normal – normal pairs.

Since we mark each user who belongs to at least one u1 ⇒
u2 pair as coordinating, our model detected 165 users as
coordinating. For that case, the precision is 80.0% and recall
is 72.0% for detecting a coordinated user out of a mix of
users. The model took 43 minutes to train and predict on an
M1 MacBook. Refer to Table 2 for other dataset sizes.

Figure 3a displays a graph we constructed using vertices
as users and edges as influence flows identified by our model.
It is apparent that there are four visible clusters of tightly
coupled users for this sample. Figure 3b and 3c are described
in the following subsections. There, we demonstrate how we
exploited the clustered nature of users to optimize our model.

4.4 Optimizations
Motivation. In order to formally identify sub-communities
in the graph in Figure 3a, we performed community detection
(Blondel et al. 2008) on our results. The community detection
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Figure 3: Influence graphs for NC = 200, NN = 200. Each edge represents an edge identified by CCM. The edge color is simply
an average color between the vertices. (a) Pink vertices are known coordinating users. Green vertices are known normal users.
(b) Vertex color represents the community identified (Blondel et al. 2008). (c) Vertex color represents the topic of discussions of
each user identified by CCM  – General,  – Trump vs. Hillary,  – News,  – Democratic Party,  – Emotions.

algorithm could detect 5 main sub-communities. The colored
sub-communities are shown in Figure 3b.

In a perfect scenario, say we could detect n equal sized
clusters in a set of users U of size N . If we only compare
user pairs within the clusters, our search space is reduced
from NC2 to n×N/n C2. The relative decrease in run time
is:

n×N/n C2

NC2
=

nN/n(N/n−1)
2

N(N−1)
2

=
N − n

n(N − 1)

∼ 1

n
, Given N ≫ n

This is a huge increase in performance in the best case. A
suitably engineered clustering technique could achieve nearly
equal clusters and hence can achieve this much performance
increase in terms of computational time to our model.

We experimented with different clustering techniques, and
compared those results with the sub-communities identified
above as the baseline. For a comparison metric, Adjusted
Rand Score (Steinley 2004) was used. Since we detected 5
sub-communities using community detection for the above
sample, for comparison, we used n = 5 as the number of
components (clusters) for each clustering method, since we
observed 4 large visible clusters and a small cluster at the
top of the graph in Figure 3b. Table 1 shows that NMF (Non-
negative Matrix Factorization) topic modelling yields the best
results out of the tested methods.

Topic modelling. NMF (Févotte and Idier 2011) is a ma-
trix factorization technique that decomposes a non-negative
W ×H sized matrix into two matrices of size W × n and
n × H as a product. n is a significantly smaller number
than W and H . Due to the clustering property of NMF, se-
mantically related terms are automatically grouped, form-
ing distinct topics. In order to perform NMF, a document

Table 1: Comparing different clustering techniques with the
identified communities.

Method Adjusted Rand Score

Baseline (Communities) 1
NMF 0.38
K-Means 0.09
DBSCAN 0.11
OPTICS 0.12
Feature Agglomeration 0.21

term matrix is constructed while TF-IDF weight adjustment
is applied to the dataset to ensure term importance. Given
an n, NMF decomposes this matrix into two matrices: (1)
Document term matrix (W × n) - Each row represents a
document, and each column represents a topic, indicating the
document’s distribution over topics. (2) Term-topic matrix
(n×H) - Each row represents a topic, and each column rep-
resents a term, indicating the importance of each term within
each topic. The challenge here is to find the least number
of topics that partitions the dataset into semantically differ-
ent subsets. Practically, maximizing the Average Silhouette
Score (Rousseeuw 1987) can be recommended to determine
the number of clusters n.

Observations and optimization methodology. Each tweet
was treated as a document. Both English and Russian stop-
words were removed and the documents were vectorized
using TF-IDF vectorization. Then, NMF was applied to the
matrix constructed by concatenating the TF-IDF vectors. For
the following samples, the number of topics was chosen as
5 to run NMF due to the observations made in Figure 3b.
To derive the cluster of each of user they belongs to, each
tweet of a user is concatenated into a single document. Then,
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Figure 4: Influence graph for NC = 200, NN = 200. Each edge represents an edge identified by CCM after isolating user groups
by topics. The edge color is simply an average color between the vertices. (a) Pink vertices are known coordinating users. Green
vertices are known normal users. (b) Vertex color represents the topic of discussions of each user.  – News,  – General,  –
Democratic Party.

(a) (b)

Figure 5: Influence graph for NC = 400, NN = 400. Each edge represents an edge identified by CCM after isolating user groups
by topics. The edge color is simply an average color between the vertices. (a) Pink vertices are known coordinating users. Green
vertices are known normal users. (b) Vertex color represents the topic of discussions of each user.  – General,  – Politics,  –
News.

the trained NMF was used to predict the topic to which that
long document belongs. The percentage shows the proportion
of the number of people who belong to each topic out of
everyone who was tested. The following are the top words
that appeared in topics along with our own interpretation of
the topic in a single word/phrase.
• need, make, think, life, want, know, people, just, like, don

– General (44.2%)
• campaign, debate, cnn, says, vote, politics, donald, clinton,

hillary, trump – Trump vs. Hillary (33.9%)
• killed, new, state, cbs, man, says, kansas, police, world,

news – News (15.8%)

• far, muslim, isis, president, american, hillary, america,
usa, obama, tcot – Democratic Party (5.5%)

• ll, let, heart, oh, fall, hate, song, true, life, love – Emotions
(0.6%)

Figure 3c shows a graph of the users colored by the topic
they are associated with. It is apparent that some topics clearly
overlap with the clusters we identified using community de-
tection in Figure 3b.

For NMF to be used as an optimization step, we cluster
users using the topic. Then, we do pairwise cross mapping
for each user pair inside the cluster. We evaluated the per-
formance of our CCM model while exploring the impact of



Table 2: Comparing original results and results with topic clustering including runtimes in minutes. CC – the number of known
coordinating - coordinating pairs detected by the model, CN – the number of known coordinating - normal pairs detected by the
model, and NN – the number of normal - normal pairs detected by the model.

Dataset Method Runtime CC CN NN Precision Recall F1 Score

NC = 100, NN = 100
CCM 11 610 41 10 87.3% 62.0% 72.5%
CCM + NMF 4.2 524 7 7 91.0% 61.0% 73.0%

NC = 200, NN = 200
CCM 43 2319 63 22 80.0% 66.0% 72.0%
CCM + NMF 11.4 1818 12 7 91.4% 64.0% 75.3%

NC = 400, NN = 400
CCM 164 4453 123 153 66.1% 52.2% 58.4%
CCM + NMF 60.5 4106 13 119 69.8% 49.8% 58.1%

incorporating NMF on accuracy and runtime for different
sizes of datasets. Table 2 summarizes the results. CCM com-
bined with NMF demonstrated higher precision than CCM
alone, identifying a greater proportion of true coordinating
pairs among those detected. Recall remained relatively consis-
tent across both methods due to the reduction in search space,
suggesting similar abilities to detect existing coordinated
pairs. CCM + NMF consistently exhibited faster runtimes
compared to CCM alone. This suggests that topic clustering
can significantly improve efficiency without compromising
accuracy.

CCM + NMF results in lower precision and recall for the
NC = 400, NN = 400 case. This decline is largely attributed
to the selection of top active users, as inadequate data points
hinder CCM’s ability to identify relevant users. Nonetheless,
if there is sufficient data and the coordination actions are well
preserved in the time series data, our model would not suffer
from these issues since it compares users pairwise, making
the calculation independent of the dataset size. Therefore, the
amount of data points and the preservation of coordination in
time series are important for scalability.

Figure 4 shows the derived influence graphs with this op-
timization for NC = 200 and NN = 200. Figure 5 shows
results for NC = 400 and NN = 400.

Receiver operating characteristic (ROC curve) after topic
clustering. The corresponding ROC curve for the CCM +
NMF model for NC = 200, NN = 200 case reveals that the
performance of the refined approach closely aligns with that
of the CCM model for the same dataset (Figure 6). In detail,
the area under the curve (AUC) for CCM and CCM + NMF is
0.7219 and 0.7221 respectively. This observation is an impor-
tant indicator that the reduction in search space does not lead
to a noticeable degradation in performance. Consequently,
CCM + NMF emerges as a viable alternative, offering a more
efficient yet equally effective solution for identifying coordi-
nation. Furthermore, the optimal thresholds for maximizing
Youden’s J statistic (Youden 1950) were identified at 0.56
for the CCM model and 0.49 for the CCM + NMF model,
which supports the selection of 0.5 as a reasonable threshold
for these analyses.

The distribution of influence scores. The distribution of
influence scores (ρ) yielded by both CCM and CCM + NMF
is plotted to illustrate the capability of NMF in detecting less
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Figure 6: ROC curves of CCM and CCM + NMF models for
NC = 200, NN = 200 case at different threshold values.

−0.2 0.0 0.2 0.4 0.6 0.8 1.0
Influence score

100

101

102

103

104

105

Fr
eq

ue
nc

y

CCM
CCM + NMF
Applied threshold (0.5)

Figure 7: The distribution of influence scores (ρ) yielded by
CCM and CCM + NMF models for NC = 200, NN = 200
case. Bin size is approximately 0.005.

significant links (Figure 7). The log scaled y-axis empha-
sizes the difference in the frequency distributions below the
threshold. Simultaneously, the negligible difference in the
frequency distributions above the threshold highlights NMF’s
ability to preserve critical links. This clearly highlights the



discriminative power of NMF.

4.5 Baseline comparisons
We choose the following baselines to compare our results.
1. GC (Granger 1969). Granger Causality (GC) is a method

that incorporates statistical testing to determine the causal-
ity between two time series. Given two users, we use a
p-value of 5% to determine if the two activity traces are
causally related. This method was used in place of CCM
in our model (without NMF) to determine the effective-
ness of CCM in identifying coordinated users.

2. LCN + HCC (Weber and Neumann 2021). This approach
aims to identify coordinated communities using commu-
nity detection on user similarity graphs. The temporal
aspect is considered by a windowing mechanism. We set
the window length parameter to 10 days.

3. Tweet language. Since most (82%) of the data in the co-
ordinated set of users are in Russian and most (93%) of
the data in the noise data are in English, we compare our
results with the results of a naive model that only uses the
language to determine the coordination status. This model
simply classifies a user to be coordinated if the language
is Russian.

4. AMDN-HAGE. (Sharma et al. 2021) This is the SOTA
for identifying coordinated users. We use the same set
of hyperparameters except the threshold to determine the
output influence values. Instead, we maximize the F1
score to determine it.

Table 3 showcases comparisons of our results with the
above baselines. In all cases, CCM outperforms GC in terms
of F1 score. Specifically, for NC = 200, NN = 200 case,
GC detects 77191 edges out of 79800 possible bidirectional
edges leading to classifying all users in the sample as coor-
dinating users. This leads to a recall of 100%. With GC, out
of the 77191 identified edges, 19705 (25.5%) were known
coordinating-coordinating pairs. These statistics can be com-
pared with Table 2. Thus, the choice of CCM for determining
causality between time series data is justified. The CCM
model achieved the highest precision, indicating a superior
ability to accurately identify true coordinating pairs among
those detected. This suggests CCM’s effectiveness in mini-
mizing false positives, a crucial aspect of coordinated user
detection. AMDN-HAGE exhibited the highest recall, sug-
gesting its strength in detecting the majority of existing coor-
dinating users. However, its relatively low precision indicates
a higher propensity for false positives, perhaps due to the
limited timeframe of the dataset. CCM + NMF achieved
the highest F1 scores for datasets with 200 and 400 users,
demonstrating a favorable balance between precision and
recall. This highlights its potential to provide more compre-
hensive and accurate coordination detection compared to the
other baselines. However, its performance for 800 users was
lower compared to LCN + HCC, indicating potential room
for further optimization.

4.6 Leader-follower behaviour
Recall that influence is a directional relationship between
users. A leader on an OSN could be someone who originates

content or significantly contributes to the spread of content,
ideas or trends in the network. Such leaders can be identi-
fied by examining how often they are retweeted/mentioned,
having high degree centrality in the influence graph. On the
other hand, a follower is someone who consumes or amplifies
the content of leaders. Vertices whose indegree is high but
outdegree is relatively low in the influence graph could be a
user with a follower personality.

Define net-degree to be the difference between the
outdegree(deg+(v)) and indegree(deg−(v)) i.e., ndeg(v) =
deg+(v)− deg−(v). We inspected the influence graphs and
checked the users who have the top net-degrees. To verify our
results, for each user in the sample, we listed the number of
times they were retweeted and the number of times they were
mentioned. We recorded the percentile they belong in both
categories. Table 4 demonstrates our results. The following
are the user display names associated with the top users and
some details about them (Russian names are translated to
English).

• u1: Open Russia – Open Russia constitutes a political or-
ganization established by the exiled Russian businessman
Mikhail Khodorkovsky (Mikhail Khodorkovsky 2014).

• u2: <Anonymized> – Conservative political science com-
mentator (according to their profile description on Twit-
ter).

• u3: Ramzan Kadyrov – A Russian politician, currently
the head of the Chechen Republic

• u4: Moscow Bulletin – A bulletin service
• u5: Bulletin of Novosibirsk – A bulletin service

According to the above information, the influence graph
combined with net-degree sorting was able to pick impor-
tant users without prior knowledge of the content they post,
thus supporting the reliability and effectiveness of the CCM
methodology.

4.7 Uncovering coordinated behaviours
We applied our model to the same set of users but to different
periods of time. Interestingly, we get better results between
November 2014 to July 2015 (See Figure 8) compared to
2016 election times, which indicates higher coordination at
that time. Upon inspection, we could observe that almost
all the discussions were in Russian and they are related to
mostly Russian and Ukrainian politics. There existed minor
discussions related to US politics as well. Our results show
that the IRA has been politically influencing different parts
of the world even before 2016 US Elections even though the
dataset was released due to their anomalous activity in 2016.
The following are the top words translated from Russian to
English that appeared in the identified topics in relevant time
periods.

• 4 months since November 2014

– politics, Vladimir, news, sanctions, rf, anti-sanctions,
stoptank, Putin, Russia, EU

– will happen, prodigal, politics, Kiev tell the truth, de-
feat, plan, provocation of Kiev, Poroshenko, news,
Ukraine



Table 3: Results for detecting coordinated users using different methods. NC - number of coordinating users in the dataset, NN -
number of normal users in the dataset.

Method NC = 100, NN = 100 NC = 200, NN = 200 NC = 400, NN = 400

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

GC 48.0% 98.0% 64.4% 50.0% 100% 66.7% 45.0% 80.0% 57.6%
Tweet language 64.0% 80.0% 71.1% 66.0% 81.0% 72.7% 66.0% 75.0% 70.2%
LCN + HCC 76.1% 63.0% 68.9% 77.3% 65.0% 70.6% 81.5% 70.4% 75.5%
AMDN-HAGE 50.0% 98.0% 66.2% 50.4% 100% 67.0% 50.6% 100% 67.2%

CCM 87.3% 62.0% 72.5% 80.0% 66.0% 72.0% 66.1% 52.2% 58.4%
CCM + NMF 91.0% 61.0% 73.1% 91.4% 64.0% 75.3% 70.1% 49.3% 57.9%

Table 4: Users with top net-degree in the derived influence graph without optimizations. The number of tweets, retweets and
mentions are calculated within the sample time window of 4 months from July 2016 with NC = 200, NN = 200. User-ids are
hidden due to Twitter terms of service.

User IRA user? Number of tweets Net-degree
(Indegree,

Outdegree)

Retweets (Percentile) Mentions (Percentile)

u1 Yes 788 14 (8, 22) 34 (94.8%) 36 (93.8%)
u2 No 6729 8 (20, 28) 88 (95.8%) 112 (96.5%)
u3 Yes 1061 7 (14, 21) 89 (96.0%) 91 (95.5%)
u4 Yes 1257 6 (19, 25) 3 (75.1%) 5 (74.5%)
u5 Yes 891 5 (14, 19) 6 (81.3%) 6 (77.2%)

– next, situation, difference, interesting, battle of oli-
garchs, happening, provocation of Kiev, Kiev tell the
truth, Kievsbilboing, Ukraine

– politics, world, read, interesting, retweet against
Obama, Obama, politics, Obama, American plague,
usa

– read, ready, looks like, interesting, battle of the oli-
garchs, provocation of Kiev, Kievsbilboing, Kiev tell
the truth, gas sector, Ukraine

• 4 months since March 2015
– EU, battle of the oligarchs, putin, alien, worthy, rf, quot,

opinion, ukraine, news
– sanctions, rf, politics, politics, read, interesting, Obama,

Ukraine, return California, USA
– foreign ministry, Poroshenko, sanctions, politics, com-

ing, Klimkin, not easy, negotiations, Ukraine, Russia
– zelenskyrun, god, national, idea, Russia, Russians, read,

written, interesting, Russian spirit

5 Case Study
5.1 COVID-19 Dataset
The development and validation of models aimed at detecting
coordinated activities on social media platforms face sig-
nificant obstacles, primarily due to the absence of datasets
that are both representative of such activities and annotated
with verifiable ground truth. This scarcity of labeled data
complicates efforts to rigorously evaluate the performance of
proposed detection methodologies.
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Figure 8: Results at different times for the same set of users.
This indicates that the IRA Twitter attackers were performing
coordinated attacks even before 2016 US elections.

In order to verify the performance of our model, we con-
ducted a case study on the Twitter dataset related to COVID-
19 curated by Lamsal (Lamsal 2020). The dataset spans one
year and five days starting from 19 March 2020. It consists
of approximately 75.9 million tweets generated by 10.8 mil-
lion users. The tweets in this dataset were labelled with their
stance in regard to anti-vax hesitancy (favor, against, and
none) in Zaidi et al. (2022)’s study using a stance detection
tool based on OpenAI’s GPT transformer model (Radford
and Narasimhan 2018).

During the COVID-19 pandemic, numerous bots were set
up to collect and disseminate information about vaccines and
public health measures. These bots were highly active, of-



ten retweeting content from mainstream media and official
health sources to promote health protection and disseminate
breaking news about COVID-19. The high level of public
interest in the pandemic led to extensive resharing of these
posts, creating a collective activity that appeared as coordi-
nated behaviour (Al-Rawi and Shukla 2020). This context
underscores the relevance of the dataset for analysing coor-
dinated actions, as it mirrors real-world scenarios where bot
activity and public engagement form discernible patterns of
coordination.

5.2 Experimental Setup
Selecting a subset. In order to ensure that there is enough
data to apply CCM, a sufficiently large subset of users from
the dataset was selected. Thus, the most active 800 users
were selected in the timespan starting from 1 December 2020
to the end of the dataset (nearly 5 months). This timespan
was chosen since the first doses of COVID-19 vaccines were
available since December 2020, a pivotal moment likely to
influence user behaviour and potential coordination efforts.

Parameters. We used a bin size I = 60 minutes and a lag
τ = 1, and an embedding size E = 16 as parameters of
CCM.

5.3 Labelling users and user-user pairs
The users were labelled by the content of their posts. User-
user pairs were labelled by their semantic-agreeability.

Stance. The tweets in the dataset were labelled by the
stance. To assign a predominant stance to each user, we anal-
ysed the most frequent stance expressed across their tweets.
It could be observed that, out of the 800 selected users, our
analysis revealed the following distribution: 66.8% exhib-
ited an against stance (pro-vax), 36.1% held an favor stance
(anti-vax), and 24.1% did not express a clear stance. Addi-
tionally, user-user pairs were defined as stance-agreed if both
individuals shared the same stance (either pro-vaccine or anti-
vaccine); otherwise, they were considered stance-disagreed.

Topic. To further describe the semantic content of user
posts, we applied NMF (Févotte and Idier 2011). We set the
number of topics to six (by maximizing the topic coherence
(Röder, Both, and Hinneburg 2015)). In order to label a user
with a topic, we concatenated all the tweets authored by that
user and predicted the topic cluster using the trained NMF
model. The following are the top words that appeared in
topics along with our own interpretation of the topic in a
single word/phrase. The percentage shows the proportion of
users who belong to that topic cluster.

• immunity, just, know, like, virus, time, need, don, people,
vaccines – Immunity (60.8%)

• pfizer, vaccinations, india, news, health, says, vaccination,
vaccine, 19, covid – Covid 19 Vaccination (21.1%)

• today, health, covidvaccine, global, india, protests, pan-
demic, vaccine, vaccination, covid19 – Global vaccine
outreach (9.65%)

• oxford, million, uk, says, astrazeneca, news, doses, pfizer,
vaccine, coronavirus – UK vaccines (8.15%)

• quit, sex, alcohol, smoking, porn, extramarital, premarital,
virus, corona, make – Lifestyle (0.25%)

• caring, pkpp, momennegaraku, prayformalaysia, jabatan-
penerangan, watlakerdoh, kitajagakita, pmrdungun, ki-
tateguhkitamenang, tidakpastijangankongsi – Covid 19 in
Malaysia (0.13%)

Similar to stance-agreeability, if two users discuss similar
topics, we define that they are topic-agreed. Otherwise, we
define that the two users are topic-disagreed.

5.4 Results
This subsection details the findings of our model’s per-
formance in identifying semantic agreement among user
pairs and distinguishing leader-follower dynamics within the
dataset. It is important to clarify that the identification of an
influence in the form u1 ⇒ u2 signifies the selection of the
unordered pair (u1, u2) as an identified pair. Consequently,
the detection of a bidirectional influence is not requisite for
the inclusion of a pair in the set of identified pairs.

Proportion of semantically-agreed user pairs. Out of
800C2 pairs of users, our model identified 1515 pairs of users.
Out of the identified pairs, 965 (63.7%) pairs were stance-
agreed and 947 (62.5%) pairs were topic-agreed. We could
observe that the proportion of stance-agreed pairs and the
topic-agreed pairs in the set of pairs identified by our model
is increasing with thresholds higher than 0.5. This suggests
that our model is capable in capturing influence flows among
users who share semantic alignments, reinforcing its utility
in detecting coordinated behaviour based on shared content
and viewpoints.

Leader-follower behaviour. We performed a study similar
to Section 4.6 on this dataset to further verify our model’s
ability to differentiate the nodes that are most influential and
the nodes that are most influenced. The influence graph gen-
erated by our model was then inspected. The nodes that had
the highest net-degree were selected as the most influential
users and the nodes that had the lowest (negative) net-degrees
were selected as the users who were most influenced by other
users in the sample.

The top five most influential nodes identified by our model
are listed below, along with detailed descriptions of their
accounts. Their in-degree, out-degree, stance, and the labelled
topic are included in the parentheses.

• All 435 Reps – retweeting tweets by all members of the
US House of Representatives (deg−(v) = 23, deg+(v) =
107, stance = against (pro-vax), topic = Immunity)

• Pub Health Monitor – retweeting public health related
tweets (deg−(v) = 15, deg+(v) = 56, stance = against
(pro-vax), topic = Global vaccine outreach)

• all100Senators – retweeting tweets by all members of
the US Senate (deg−(v) = 1, deg+(v) = 31, stance =
against (pro-vax), topic = Immunity)

• Devdiscourse – retweeting international development
news (deg−(v) = 2, deg+(v) = 30, stance = against
(pro-vax), topic = Covid-19 vaccination)
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Figure 9: The variation of the proportion of semantically
agreed pairs of users out of all the identified pairs of users un-
der the variation of the threshold for both CCM and AMDN-
HAGE models with respect to stance-agreeability (top) and
topic-agreeability (bottom).

• <Anonymized> – a researcher at a public health uni-
versity (deg−(v) = 2, deg+(v) = 30, stance = against
(pro-vax), topic = Immunity)

Four of the above accounts can arguably be classified as
bot accounts since their purpose is to retweet pre-determined
accounts. However, apparently, the number of users whose
behaviour is triggered by these few accounts are compara-
tively high. The users who are influenced by the most other
users according to the influence graph are user accounts that
are owned by normal people. These results demonstrate the
applicability of our model to identify influential nodes in a
user network.

Baseline comparisons. To further validate the results of
our model, we compared the performance of our model with
AMDN-HAGE’s (Sharma et al. 2021) performance on this
dataset. AMDN-HAGE outputs a matrix of influence scores
for each user-user pair, which is similar to the output format
of our model. Therefore, all the above experiments can be
carried out for AMDN-HAGE. The threshold for AMDN-
HAGE was determined by choosing the closest point on the
ROC curve to the (0, 1) point for classifying user-user pairs
as either semantic-agreed or not. The threshold turned out to
be 0.02 for both stance-agreeability and topic-agreeability.

Out of 800C2 user pairs, AMDN-HAGE identified 122823
pairs of users. Out of the identified pairs, 61943 (50.4%)
pairs were stance-agreed and 55237 (44.9%) pairs were topic-
agreed. More results for different threshold values are demon-
strated in Figure 9. It can be clearly observed that CCM
surpasses AMDN-HAGE in terms of detecting relevant se-
mantically similar user-user pairs by only training on time
series data.

6 Conclusion
In this work, we proposed an approach to identify causally
linked coordinating user pairs by employing convergent cross
mapping of their activity traces. We consider a coordinated
community as a dynamic system of variables devoid of exter-
nal influences. The clustered nature of the influence graphs
motivated us to pre-cluster users as a preliminary step before
applying CCM, thereby reducing the overall search space and
addressing RQ2. In conclusion, CCM demonstrates competi-
tive performance in detecting coordinated users on Twitter,
particularly excelling in precision answering RQ1. Its ability
to identify influential users and causal relationships between
users’ activities in a community offers a unique advantage
over traditional content-based or network-based methods.
Further, we showed that our model has the ability to identify
influential users in a COVID-19 related dataset.

While our approach offers significant advantages, it also
comes with several limitations that need to be addressed
(RQ3). First, the computational complexity of analyzing all
pairs of users using CCM is substantial, particularly as the
number of users increases. This quadratic growth in compu-
tational requirements can make it challenging to scale the
method for large datasets. Second, the sensitivity to parame-
ter selection, such as embedding dimensions and time delays,
requires careful tuning to ensure accurate causal inference.
Third, real-time detection of coordinated behaviour is an-
other challenge. The computational demands and the need
for timely analysis require efficient algorithms. A study in the
evolution and the dynamics of influence graphs could benefit
real-time detection. The future direction of this research aims
to address the above limitations.
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of your work? No, because we do not see a potential
negative impact of our work on the society.

(g) Did you discuss any potential misuse of your work?
No, because we do not see a potential of such misuse
of our work.

(h) Did you describe steps taken to prevent or mitigate po-
tential negative outcomes of the research, such as data
and model documentation, data anonymization, respon-
sible release, access control, and the reproducibility of
findings?

(i) Have you read the ethics review guidelines and ensured
that your paper conforms to them? Yes, we did.

2. Additionally, if your study involves hypotheses testing...
(a) Did you clearly state the assumptions underlying all

theoretical results? NA
(b) Have you provided justifications for all theoretical re-

sults? NA
(c) Did you discuss competing hypotheses or theories that

might challenge or complement your theoretical re-
sults? NA

(d) Have you considered alternative mechanisms or ex-
planations that might account for the same outcomes
observed in your study? NA

(e) Did you address potential biases or limitations in your
theoretical framework? NA

(f) Have you related your theoretical results to the existing
literature in social science? NA

(g) Did you discuss the implications of your theoretical
results for policy, practice, or further research in the
social science domain? NA

3. Additionally, if you are including theoretical proofs...
(a) Did you state the full set of assumptions of all theoreti-

cal results? NA

(b) Did you include complete proofs of all theoretical re-
sults? NA

4. Additionally, if you ran machine learning experiments...
(a) Did you include the code, data, and instructions needed

to reproduce the main experimental results (either in
the supplemental material or as a URL)? Yes, the in-
structions are given in the article.

(b) Did you specify all the training details (e.g., data splits,
hyperparameters, how they were chosen)? Yes, the ex-
perimental setup is provided in Section 4.2.

(c) Did you report error bars (e.g., with respect to the ran-
dom seed after running experiments multiple times)?
No, because the core machine learning component
(KNN classifier) is a deterministic algorithm.

(d) Did you include the total amount of compute and the
type of resources used (e.g., type of GPUs, internal
cluster, or cloud provider)? Yes, that is provided in
Section 4.3.

(e) Do you justify how the proposed evaluation is sufficient
and appropriate to the claims made? No, the evaluation
method is a core component in the CCM methodol-
ogy. We do not see the importance of repeating the
justification to it in this article.

(f) Do you discuss what is “the cost“ of misclassification
and fault (in)tolerance? Yes, we discuss the improve-
ment in precision. Our work significantly increases
precision in identifying coordinated users compared to
baselines. Therefore, reducing the cost of misclassifica-
tions is a key contribution in our work.

5. Additionally, if you are using existing assets (e.g., code,
data, models) or curating/releasing new assets, without
compromising anonymity...

(a) If your work uses existing assets, did you cite the cre-
ators? No, because we use common Python libraries
such as Numpy, Scikit-Learn, and Pandas.

(b) Did you mention the license of the assets? NA
(c) Did you include any new assets in the supplemental

material or as a URL? NA
(d) Did you discuss whether and how consent was obtained

from people whose data you’re using/curating? No,
because we comply with Twitter Terms of Service.

(e) Did you discuss whether the data you are using/cu-
rating contains personally identifiable information or
offensive content? No, we do not expose details that
can uniquely identify a user on Twitter.

(f) If you are curating or releasing new datasets, did you
discuss how you intend to make your datasets FAIR
(see FORCE11 (2020))? Not applicable since we do
not release our dataset. That would be a violation of
Twitter’s Terms of Service.

(g) If you are curating or releasing new datasets, did you
create a Datasheet for the Dataset (see Gebru et al.
(2021))? NA

6. Additionally, if you used crowdsourcing or conducted
research with human subjects, without compromising
anonymity...



(a) Did you include the full text of instructions given to
participants and screenshots? NA

(b) Did you describe any potential participant risks, with
mentions of Institutional Review Board (IRB) ap-
provals? NA

(c) Did you include the estimated hourly wage paid to
participants and the total amount spent on participant
compensation? NA

(d) Did you discuss how data is stored, shared, and deiden-
tified? NA


